Как проверить фазы газораспределения

Регулирование фаз газораспределения ДВС

как проверить фазы газораспределения
В теории для наполнения цилиндра горючей смесью и выпуска отработанных газов клапаны должны открываться точно в верхней или нижней мертвых точках. На практике же это приходится делать заблаговременно. Причем на разных оборотах двигателя время открытого состояния должно быть разным.

Но время и высота подъема клапанов раз и навсегда заданы формой кулачков распредвала, представляя собой компромисс между высоким крутящим моментом на низких оборотах и высокой мощностью на высоких оборотах.

Чтобы оптимизировать наполнение и очистку цилиндров двигателя в разных режимах работы были созданы системы изменения фаз газораспределения.

статьи

  • 1 Как двигают фазы
  • 2 Системы регулирования фаз

Как двигают фазы

У разных производителей существуют различные конструкции таких систем. Одни изменяют время подъема клапанов, другие – высоту подъема, а третьи – и то, и другое. Системы изменения фаз могут устанавливаться только для впускных клапанов или и для впускных, и для выпускных. В настоящее время используется три способа изменения фаз газораспределения.

  • Первый способ – поворот распредвала по ходу вращения с ростом оборотов двигателя. Таким образом, обеспечивается более раннее открытие клапанов. Основная деталь таких систем – фазовращатель (другое название – гидроуправляемая муфта). Он представляет собой ротор, смонтированный в шкиве распредвала, между которыми есть полости. Эти полости по сигналу контроллера двигателя через электромагнитный клапан заполняются маслом, что приводит к повороту распредвала. Угол поворота зависит от того, какая именно полость заполнена. Фазовращатель в большинстве случаев устанавливается только на впускной распредвал, на некоторых системах – и на выпускной. Описанный способ используется в системах VANOS и Double VANOS от BMW, VVT-i и Dual VVT-i(Variable Valve Timing with intelligence) от Toyota, VVT(Variable Valve Timing) от Volkswagen, VTC(Variable Timing Control) от Honda, CVVT(Continuous Variable Valve Timing) от Hyundai, Kia, Volvo, General Motors, VCP(Variable Cam Phases) от Renault.
  • Второй способ – применение кулачков разного профиля на разных режимах работы. На малых оборотах используются кулачки, обеспечивающие «узкие» фазы, то есть малые высоту подъема и время открытия клапанов. С ростом оборотов по команде блока управления происходит переключение на «широкофазные» кулачки. Таким образом, фазы меняются ступенчато, а не плавно, как в предыдущей системе. Зато, кроме фаз, регулируется и высота подъема клапана. Разнопрофильные кулачки используют в своих системах: VTEC (Variable Valve Timing and Lift Electronic Control) от Honda, VVTL-i (Variable Valve Timing and Lift with intelligence) от Toyota, MIVEC (Mitsubishi Innovative Valve timing Electronic Control) от Mitsubishi.
  • Третья, самая совершенная группа систем, плавно регулирует высоту подъема клапанов. Главное достоинство таких систем в том, что они позволяют отказаться от дроссельной заслонки на впуске. Тем самым существенно снижаются насосные потери и расход топлива. Впервые такая система под названием Valvetroniс была применена BMW. В ней между распредвалом и клапаном расположен дополнительный рычаг, один конец которого давит на коромысло клапана, а второй соединен с эксцентриковым валом. Проворачивая этот вал с помощью электромотора, система управления тем самым меняет наклон рычага и его плечо. Увеличение плеча приводит к увеличению подъема клапана и количества воздуха, попадающего в цилиндры. Высота подъема регулируется в пределах от 0,5 до 12 мм.

Вслед за BMW аналогичные системы создали Valvematic от Toyota, VEL (Variable Valve Event and Lift System) от Nissan, MultiAir от Fiat, VTI (Variable Valve and Timing Injection) от Peugeot.

В системе MultiAir используется один распредвал, который приводит и впускные, и выпускные клапана. Но если выпускные клапана механически управляются кулачками, то на впускные воздействие от кулачков передается через специальную электрогидравлическую систему. Именно в ней и состоит новизна. Впускные кулачки нажимают на поршни, а те через электромагнитный клапан передают усилие на рабочие гидроцилиндры, которые уже воздействуют на впускные клапана.

Главный узел – именно клапан, регулирующий давление в системе. Он имеет только два положения: открыт-закрыт. Если он открыт, давление в системе отсутствует, и усилие на клапан не передается. Поэтому, управляя моментом и длительностью открытия электромагнитного клапана за то время, пока кулачок воздействует на поршенек, можно добиться любого алгоритма открытия впускных клапанов. А значит, ширину фаз можно плавно регулировать от 0 до 100%.

Максимальная ширина фазы определяется профилем впускного кулачка распредвала.

А какое отношение все вышеописанное имеет к экологии? Системы изменения фаз газораспределения, оптимизируя процесс сгорания топлива, тем самым снижают его расход, а, значит и количество вредных выбросов.

Системы регулирования фаз

Система регулирования фаз VTEC от Honda.Система регулирования фаз MultiAir от FIATСистема регулирования фаз VVT от Volkswagen.

Источник: https://avtonov.info/regulirovanie-faz-gazoraspredelenija-dvs

Что такое фазы газораспределения?

как проверить фазы газораспределения

Моторы работают на бензине, газе, спирте или дизельном топливе — по 2- или 4-тактному циклу. И в любом случае их характер сильно зависит от того, что называют фазами газораспределения. Так с чем же их едят? Зачем нужно регулировать фазы? Давайте посмотрим.

Газообмен

От того, как мы дышим, зависит многое в нашей жизни. Да и сама жизнь; в мире д.в.с. примерно так же. Возьмем 1,5-литровый ВАЗовский 16-клапанник; хотите, чтобы он тянул на V при 600 мин-1? Для прикола.

Вопрос выбора фаз газораспределения: подберем профиль кулачков впускного распредвала так, чтобы впуск начинался примерно на 24° (по углу поворота коленчатого вала) после в.м.т.

Кулачки сделаем настолько «тупыми», что клапаны поднимаются только на 3 мм, а заканчивается впуск где-то на 6° после н.м.т.

Начало выпуска регулируем на 12° до н.м.т., а закрываются выпускные клапаны пусть как раз в в.м.т.; их подъем оставляем «по штату». Градусы и миллиметры подъема клапанов и есть те самые фазы: раньше, позже.

Круговая диаграмма фаз газораспределения 4-тактного двигателя

Проверьте экспериментально: при правильной настройке зажигания и впрыска горючего модифицированная «четверка» покажет наибольший крутящий момент в 75-80 Нм — где-то на 6 сотнях оборотов! Максимальная мощность — 10-12 л.с. при 1500 мин-1; не обессудьте. Однако мотор и в самом деле потянет от самых «низов» — как (маленькая) паровая машина. Жаль только, ни оборотов, ни мощности он не развивает.

Полная диаграмма впуска (выпуска): миллиметры подъема клапана по углу поворота коленчатого вала

Не нравится Зайдем с другого конца: профиль кулачков такой, что впуск начинается на 90° до в.м.т., а заканчивается на 108° после н.м.т; подъем — до 14 мм. Есть разница? И выпуск тоже: начало на 102° до н.м.т., завершение — на 96° после в.м.т.

Как говорят спецы, перекрытие выпуска и впуска — 186° по углу поворота коленвала! И что? Смотрите: с правильной настройкой зажигания и впрыска [А также с тарелками клапанов увеличенного диаметра, расточенными и отполированными впускными и выпускными каналами] ваш 1,5-литровый ВАЗ выдаст что-то вроде 185 Нм крутящего момента — под 11 тыс.

оборотов! А при 13500 мин-1 разовьет около 330 л.с. — безо всякого наддува. Конечно, если выдержат ГРМ и кривошипно-шатунный механизм (вряд ли).

Лет 40 назад такую мощность показывал хороший 3-литровый двигатель Формулы 1 Правда, ниже 6000 мин-1 форсированный ВАЗ окажется совсем дохлым [Обороты «холостого» хода придется выставлять где-то на 3500 мин-1]; его рабочий диапазон — 9-14 тыс. оборотов.

А почему так? С «низами» все понятно: во-первых, крайне позднее закрытие выпускных и раннее открытие впускных клапанов (перекрытие) ведут к тому, что в цилиндр натягивает много отработанных газов от предыдущего цикла. Топливововоздушная смесь никудышная, пропуски вспышек. Во-вторых, позднее закрытие впускных клапанов означает, что поршень на ходе сжатия вытолкнет добрую половину смеси обратно во впускные каналы. Откуда тут крутящий момент

На «верхах» наоборот: широкие фазы газораспределения позволят на все 100% мобилизовать резонанс газовых потоков на впуске и выпуске, — как говорят, акустический наддув. При правильном подборе длин и сечений (индивидуальных) впускных и выпускных патрубков, коэффициент наполнения цилиндров достигнет в зоне 11 тыс. оборотов уровня 1,25-1,35; получите искомые 185 Нм.

Вот что такое фазы газораспределения: они задают газообмен д.в.с. — впуск-выпуск.

А газообмен определяет все остальное: протекание крутящего момента, оборотность двигателя, его максимальную мощность, эластичность На паре примеров видно, как сильно меняется характер одного и того же мотора в зависимости от фаз.

Тут же возникает мысль: фазы газораспределения нужно регулировать — прямо на ходу. И тогда под капотом вашего авто окажется не один-единственный движок — на все случаи жизни, а множество неодинаковых!

Как учил лучший друг автомобилистов, «кадры решают все». Перефразируя знаменитое выражение, примем, что все решают фазы (газораспределения). Генералиссимус умел регулировать кадровые вопросы, а моторостроители всегда стремились управлять фазами.

Фазовращение

Легко сказать, но трудно сделать; у 4-тактного двигателя фазы газораспределения заданы профилем кулачков (из высокопрочной закаленной стали). Изменять его по ходу — задача не из простых. Однако кое-что удается сделать даже и с неизменным профилем, — скажем, сдвигать распредвал по углу поворота коленчатого вала.

Вперед-назад; то есть, продолжительность впуска остается неизменной (во 2-м примере — 378°), однако он и начинается, и заканчивается раньше. Допустим, впускные клапаны открываются теперь на 120° до в.м.т. и закрываются на 78° после н.м.т. Так сказать, на «раньше-раньше». Или наоборот — на «позже-позже»: впуск начинается на 78° до в.м.т.

и заканчивается на 120° после н.м.т.

https://www.youtube.com/watch?v=RLG5VPcLBio

Двигаем неизменную диаграмму впуска на «позже-позже»: фазовращение

Такое решение (для впуска) впервые применили у ALFA Romeo на 2-литровой 8-клапанной «четверке» Twin spark [Понятно, что фазовращение применимо, когда впускные и выпускные клапаны приводятся 2-я отдельными распредвалами; в середине 80-х Twin spark представлял собой одну из редких конструкций DOHC.

А с тех пор 2 вала в головке цилиндров получили широкое распространение — именно ради фазовращения.] — еще в 1985 году. Его называют фазовращением и применяют (на впуске и/или на выпуске) довольно широко. И что оно дает? Немного, но все же лучше, чем ничего. Так, при холодном пуске двигателя с каталитическим нейтрализатором выпускной распредвал поворачивают на опережение.

Выпуск начинается рано, и на нейтрализатор идут отработанные газы повышенной температуры; он быстрее прогревается до рабочего состояния. В атмосферу выбрасывается меньше вредных веществ.

Или едете вы равномерно со скоростью 90 км/ч, от мотора требуются лишь 10% его максимальной мощности. Значит, дроссельная заслонка сильно прикрыта; повышенные насосные потери, перерасход горючего.

А если сильно сдвинуть впускной распредвал на «позже-позже», то часть (допустим, 1/3) топливововоздушной смеси выбрасывается на ходе сжатия обратно во впускной коллектор [Не беспокойтесь, она никуда не денется. Так называемый «5-тактный» цикл.].

Крутящий момент и мощность двигателя понижаются (до нужного по условиям движения уровня) без излишнего дросселирования на впуске. То есть, дроссельная заслонка хотя и прикрыта, но не так сильно, насосные потери значительно меньше. Экономия бензина — и кое-что еще; разве не стоит того?

VTEC

Возможности фазовращения ограничены тем, что как говорится, «хвост вытащил — нос увяз». Когда вы уменьшаете опережение открытия клапанов, ровно на столько же увеличивается запаздывание закрытия.

Лопастной гидромеханизм углового сдвига распредвала

Час от часу не легче. Вот если каким-то образом изменять продолжительность впуска-выпуска Допустим, во 2-м примере сокращать ее, — когда надо, — с 378 до 225°. Двигатель сможет нормально работать также и «на низах» — без потери мощности «на верхах».

Осуществляются мечты: прошло 4 года после появления Twin spark с фазовращением, и Honda Motor показала 1,6-литровый 16-клапанник В16A с революционным VTEC. Двигатель оснащался — впервые в истории — 2-режимным клапанным механизмом (на впуске и выпуске); процесс пошел. Однако иной раз приходится слышать: подумаешь, VTEC — всего 2 режима. А у мотора моей «короллы» фазы регулируются бесступенчато — континуум режимов. Ну да, — если не видеть две большие разницы

Классический хондовский механизм VTEC: 3 кулачка на пару клапанов. Центральный кулачок «широкий», 2 боковых (для симметрии) – «узкие».

Блокировка коромысел поршеньком дает широкие фазы впуска (выпуска)

В нашей солнечной стране принято зачем-то дважды в год истязать людей переводом стрелок на час — на «раньше-раньше» весной и на «позже-позже» осенью. Бог им судья, речь о другом.

Переводить стрелки технически несложно не только на час каждые полгода, но и хоть каждый день по минуте. Так сказать, бесступенчато. Фазовращение подобно переводу часов — и эффект примерно такой же.

А изменять продолжительность светового дня не пробовали? Пусть не бесступенчато, только два режима, — скажем, 9 часов и 12? Так вот, хондовские инженеры нашли решение задачи такого класса; почувствуйте разницу. Допустим, в «нижнем» режиме продолжительность впуска — 186° (по углу поворота коленвала), а в «верхнем» — 252°.

Радикальное изменение условий газообмена: под капотом как бы два неодинаковых мотора. Один эластичный и тяговитый на «низах», другой — «острый», крутильный и мощный на «верхах»; 25 лет назад о таком и не мечтали. И кстати, ничего не стоит присоединить к VTEC еще и фазовращение, что у Honda и сделали в конструкции i-VTEC.

Тогда как наоборот — придать VTEC к фазовращению — не выйдет; фирменный механизм не так прост и обложен патентами.

Две неодинаковые диаграммы впуска у одного и того же мотора

Обратите внимание: VTEC позволяет варьировать диаграмму впуска (и выпуска)! Не просто двигать ее на «раньше-раньше» или «позже-позже», а изменять профиль.

Качественное продвижение против банального фазовращения — хотя режимов только 2 (в позднейших вариантах — аж 3). У Honda немало подражателей и последователей: Mitsubishi MIVEC, Porsche VarioCam Plus, Toyota VVTL-i.

Во всех случаях применяются кулачки неодинаковых профилей с блокировкой привода клапанов; представьте, работает.

Valvetronic

Ну а в 2002-м баварские конструкторы обнародовали знаменитый ГРМ Valvetronic. И если VTEC — «монтана», то Valvetronic — «полный ». Механизм в массовой эксплуатации уже 5 лет, но автообозреватели до сих пор так и не постигли его смысл и принцип работы.

Да что журналисты, если и пресс-служба BMW Посмотрите и убедитесь: в фирменных пресс-релизах Valvetronic трактуют как механизм изменения подъема клапанов! А если призадуматься? Нет ничего проще, чем регулировать подъем — не сложнее фазовращения.

Однако же Valvetronic — изощренное устройство; наверное, там есть кое-что сверх того.

Бесступенчатое варьирование диаграммы впуска (изменяется ширина основания): баварский Valvetronic. Обратите внимание: схема механизма показана неправильно – он не сможет работать. Фирменная пресс-служба max = 9,5 mm; min = 0,2 mm

О необычном механизме поговорим отдельно.

А пока признаем, что баварские моторы Valvetronic стали первыми двигателями Отто, мощность которых регулируется без дросселирования на впуске! Как у дизелей. Они обходятся без самой зловредной детали в конструкции двигателя с искровым зажиганием; сравнимо с изобретением карбюратора. Или магнето.

В 2002 году мир изменился, хотя никто и не заметил

Электромагниты

Снимаю шляпу перед инженерами BMW, и тем не менее Valvetronic — лишь эпизод в развитии двигателя Отто. Промежуточное решение — в ожидании радикального. А оно уже на пороге: бескулачковый ГРМ с электромагнитным приводом клапанов. Никаких распредвалов с их приводом, толкателей, коромысел, гидрокомпенсаторов зазоров и пр.

Просто стержень клапана входит в мощный электромагнит [С усилием по оси клапана до 80-100 кг! Иначе клапаны не успевают за своими фазами. А обеспечить такие усилия в компактном механизме непросто, в чем и состоит главная трудность создания э-магнитного ГРМ.], напряжение на который подается под контролем ЦПУ.

Вот и все: на каждом обороте коленвала ЦПУ управляет моментами начала открытия и закрытия клапанов — и высотой их подъема. Отсутствуют кулачки с их неизменным профилем, нет раз и навсегда заданных фаз газораспределения.

Электромагнитный клапанный механизм (Valeo): безграничные возможности 1 – шайбы; 2 – электромагнит; 3 – пластина; 4 – клапан; 5 – пружины; 6 – сжатие; 7 – растяжение

Диаграммы впуска и выпуска регулируются свободно и в широких пределах (ограниченных только физикой процессов). Раздельно для каждого из цилиндров и от цикла к циклу — как момент впрыска и количество подаваемого горючего. Или зажигания.

По существу двигатель Отто станет самим собой — впервые в истории. И не оставит никаких шансов дизелю. Как компьютеры нашли себя с появлением микро-«чипов», и карманные калькуляторы мгновенно вытеснили электромеханические счетные машины. Тогда как в конце 40-х ЭВМ строили на вакуумных лампах и электромагнитных реле; считайте, что двигатели с искровым зажиганием все еще находятся на той самой стадии.

Ну разве что Valvetronic

Источник: http://turbonsk.ru/chto-takoe-fazy-gazoraspredeleniya/

Фазы газораспределения и системы их изменения

как проверить фазы газораспределения

Всем доброго времени суток! Каждый из нас — водитель, а потом поневоле приходится знать хотя бы в общих чертах устройство и принцип работы двигателя, который установлен под капотом нашего авто. Но сегодня я хочу немного углубить эти знания и рассказать о том, что представляют собой фазы газораспределения, а также каким образом их можно регулировать.

ЭТО ИНТЕРЕСНО:  Питбайк что это такое

   Для чего может потребоваться корректировка фаз

Согласно международных обозначений система изменения фаз именуется «Vari­able Valve Tim­ing» или попросту VVT (VVTI, VTEC, VANOS, MIVEC и др.). С ее помощью удается менять критерии работы автомобильного газораспределяющего механизма. Делается это для того, чтобы повышать мощность мотора или его экономичность, изменять крутящий момент и делать выбросы менее токсичными. Изменение параметров работы может коснуться следующих моментов:

  • временной точки, в которой открываются либо закрываются клапана;
  • длительности периода, в течение которого они остаются открытыми;
  • высоты, на которую они поднимаются.

Для чего это нужно — может поинтересоваться читатель? Дело в том, что в ходе разных эксплуатационных режимов работы движка требуются разные значения величин газораспределительных фаз. Во время невысоких оборотов продолжительноcть их нужно сделать минимальной. В то же время, на высоких, напротив, требуются максимально длинные фазы. На этой стадии перекрываются такты впуcка и выпуска, обеспечивая естественный отвод отработанных газов.

   Способы регулирования

Регулировка критериев, в которых функционирует механизм газораспределения в транспортном средстве, предусматривает различные варианты изменения фаз. Это может быть поворот распредвала, либо использование кулачков с различным профилем, либо же различная заданная высота поднятия клапанов. Именно система, основанная на вращательном действии распред вала мотора, получила максимальное распространение.

В таком способе предусмотрена гидроуправляемая муфта. Само проворачивание распредвала происходит именно с ее участием. Устанавливают ее чаще всего на распредвале впускных клапанов.

Конструктивно для управления ею предусмотрены датчики, ЭБУ, а также некоторые устройства исполнительного типа. На управляющий блок. поступают сигналы, собранные датчиками, в результате чего формируются команды электрогидравлическому распределителю.

Смена газораcпределяющих фаз эффективна и на холостом ходу и при достижении максимальной отдачи агрегата.

В cледующей разновидности газораспределяющей схемы фазы меняются благодаря использованию в ней кулачков разных размеров. Такая установка позволяет менять периоды, в течение которых будут открыты клапаны и выcоту, на которую они смогут подняться. Применение блокирующего механизма позволяет переключаться между разными режимами работы (Hon­da — VTEC).

Если нагрузка на движок невелика, то впускные клапана управляютcя малыми. кулачками. Как только обороты возрастают, то в действие приводится уже механизм блокирующего типа. Происходит объединение коромысел от большого и малых кулачков в единую составляющую. В это же время усилие уходит на впускные клапана.

Существует еще одна методика смены газораспределяющих фаз, что основана на принципе коррекции высоты поднятия клапанов. При том, что движок может эксплуатироваться в разных режимах, она дает возможность отказаться от активного пользования заслонкой акселератора. Впервые стала применяться, как Вы думаете, каким автопроизводителем? Конечно, это был не ГАЗ, а BMW, известный своими инновационными разработками. На сегодняшний день этот принцип используют и другие автоконцерны.

В данной методике высота может корректироваться посредством вращения вала. В ней участвует промежуточный рычаг, влияющий на движение коромысла и позицию, которую занимает клапан. Сам же уровень поднятия меняется постоянно, исходя из того, в каком сейчас режиме функционирует силовой агрегат машины. Предусмотрена такая схема только для клапанов «впускного типа».

Проверка газораспределительных фаз на отечественных ВАЗах и других марках авто осуществляется при помощи специального комплекта, который называется приспособление для регулировки. Для этой цели необходимо провести следующие действия:

  1. Сначала отсоединяются вентиляционные шланги картера при помощи ослабления крепежных хомутов.
  2. Далее отбрасываются провода от катушек зажигания.
  3. Со свечей снимаются наконечники и высоковольтные провода.
  4. Провода отводятся от крышки клапанов и высвобождаются.
  5. Снимается крышка клапанов вместе с катушкой зажигания и высоковольтными проводами.
  6. Поршень 1‑го цилиндра фиксируется в верхней мертвой точке такта сжатия. Для этого необходимо провернуть коленвал по ходу его вращения. При этом метка на шкиве должна совпасть с риской на крышке.

Вот так, уважаемые подписчики, происходит проверка фаз газораспределительного механизма. При отсутствии опыта выполнения таких работ, лучше обратиться на профильное СТО. Для тех кто интересуется устройством современных транспортных средств есть интереснейший материал про принцип работы двухтактного двигателя и работу датчика дождя. Оставайтесь с нами, поскольку уже завтра Вас ждут новые интересные публикации. Пока!

Источник: http://avto-kul.ru/poleznoe-ob-avtomobile/fazy-gazoraspredeleniya.html

Что такое фазы газораспределения и как они работают

Отрезки времени от начала момента открытия клапанов двигателя до их полного закрытия относительно мертвых точек движения поршня получили наименование фазы газораспределения. Их влияние на работу двигателя очень велико. Так, от продолжительности фаз зависит эффективность заполнения и очистки цилиндров в процессе работы мотора. Это напрямую определяет экономичность расхода топлива, мощность и крутящий момент.

Сущность и роль фаз газораспределения

На данный момент существуют двигатели, в которых фазы не могут изменяться принудительно, и двигатели, оснащенные механизмами изменения фаз газораспределения (например, CVVT). Для первого типа двигателей фазы подбираются эксперементально при конструировании и расчете силового агрегата.

Нерегулируемые и регулируемые фазы газораспределения

Визуально все они отображаются на специальных диаграммах фаз газораспределения.

Верхняя и нижняя мертвые точки (ВМТ и НМТ соответственно) представляют собой крайние позиции поршня, движущегося в цилиндре, которые соответствуют наибольшему и наименьшему расстоянию между произвольной точкой поршня и осью вращения коленвала мотора.

Точки начала открытия и закрытия клапанов (длина фазы) показываются в градусах и рассматриваются относительно вращения коленчатого вала.

Управление фазами осуществляется при помощи газораспределительного механизма (ГРМ), который состоит из следующих элементов:

  • кулачковый распредвал (один или два);
  • клапанный механизм;
  • цепной или ременной привод от коленвала к распредвалу.

Газораспределительный механизм

Рабочий цикл двигателя всегда состоит из тактов, каждому из которых соответствует определенное положение клапанов на впуске и выпуске. Таким образом, начало и конец фазы зависят от угла положения коленвала, который связан с распределительным валом, управляющим положением клапанов.

За один оборот распредвала коленчатый вал выполняет два оборота и его суммарный угол поворота за рабочий цикл равен 720°.

Круговая диаграмма фаз газораспределения

Работу фаз газораспределения для четырехтактного двигателя рассмотрим на следующем примере (см. картинку):

  1. Впуск. На этом этапе поршень движется от ВМТ к НМТ, а коленвал поворачивается на 180º. Осуществляется закрытие выпускного клапана и последующее открытие впускного. Последние происходит с опережением на 12º.
  2. Сжатие. Поршень перемещается от НМТ к ВМТ, а коленвал совершает еще один поворот на 180º (360º от начального положения). Выпускной клапан остается в закрытом положении, а впускной остается открытым, пока коленвал не повернется на 40º.
  3. Рабочий ход. Поршень идет от ВМТ к НМТ под действием силы воспламенения топливовоздушной смеси. Впускной клапан находится в закрытом положении, а выпускной открывается с опережением, когда коленвал еще не дошел 42º до НМТ. На этом такте полный поворот коленвала составляет также 180º (540º от начального положения).
  4. Выпуск. Поршень идет от НМТ к ВМТ и при этом выталкивает отработавшие газы. В этот момент впускной клапан закрыт (откроется за 12º до ВМТ), а выпускной остается в открытом положении и после достижения коленвалом ВМТ еще на 10º. Общая величина поворота коленвала на этом такте также 180º (720º от начальной точки).

Фазы грм также зависят от профиля и позиции кулачков распредвала. Так, если они одинаковы на впуске и выпуске, то длительность открытия клапанов также будет одинакова.

Почему выполняется запаздывание и опережение срабатывания клапанов?

Чтобы улучшить наполнение цилиндров, а также обеспечить более интенсивную очистку от отработавших газов, срабатывание клапанов происходит не в момент достижения поршня мертвых точек, а с небольшим опережением или запаздыванием.

Так, открытие впускного клапана выполняется до момента прохождения поршнем ВМТ (от 5° до 30°). Это позволяет обеспечить более интенсивное нагнетание свежего заряда в камеру сгорания.

В свою очередь, закрытие впускного клапана происходит с запаздыванием (после того как поршень достиг нижней мертвой точки), что позволяет продолжить наполнение цилиндра горючим за счет сил инерции, так называемый инерционный наддув.

Выпускной клапан также открывается с опережением (от 40° до 80°) до момента достижения поршнем НМТ, что позволяет обеспечить выход большей части отработавших газов под действием собственного давления. Закрытие выпускного клапана, напротив, происходит с запаздыванием (после прохождения поршнем верхней мертвой точки), что позволяет силам инерции продолжить удаление отработавших газов из полости цилиндра и делает более эффективной его очистку.

Углы опережения и запаздывания не являются общими для всех двигателей. Более мощные и быстроходные имеют большие значения этих интервалов. Таким образом, их фазы газораспределения будут шире.

Этап работы двигателя, при котором оба клапана открыты одновременно, получил название перекрытие клапанов. Как правило, величина перекрытия составляет около 10°. При этом, поскольку длительность перекрытия очень мала, а раскрытие клапанов незначительно, утечки не происходит. Это довольно благоприятный этап для наполнения и очистки  цилиндров, что особенно важно при высоких оборотах.

В начале открытия впускного клапана текущий уровень давления в камере сгорания выше, чем атмосферное. В результате отработавшие газы очень быстро перемещаются к выпускному клапану. Когда двигатель перейдет на такт впуска, в камере установится высокое разрежение, выпускной клапан полностью закроется, а впускной раскроется на достаточную для интенсивного наполнения цилиндра величину сечения.

Особенности регулируемых фаз газораспределения

При высоких скоростях двигателю автомобиля необходимо больше объема воздуха. И поскольку в нерегулируемых ГРМ клапаны могут закрыться до того, как в камеру сгорания поступает его достаточное количество, работа мотора оказывается неэффективной. Для решения этой проблемы были разработаны различные способы регулировки фаз газораспределения.

Источник: https://TechAutoPort.ru/dvigatel/teoriya/fazy-gazoraspredeleniya.html

Неисправность датчика фаз: признаки, причины, как определить

Неисправность датчика фаз, который еще называют датчик положения распределительного вала, приводит к тому, что двигатель начинает работать в попарно-параллельном режиме подачи топлива.

То есть, каждая форсунка срабатывает в два раза чаще. Из-за этого происходит увеличение расхода топлива, увеличивается токсичность выхлопных газов, а также возникают проблемы с самодиагностикой.

Более серьезнейших проблем неисправность датчика не вызывает, но при выходе из строя с заменой не затягивают.

:

Для чего нужен датчик фаз

Чтобы разобраться с возможными неисправностями датчика фаз, имеет смысл вкратце остановиться на вопросе о том, что он собой представляет, а также на принципе его устройства.

Так, основная функция датчика фаз (или сокращенно — ДФ) заключается в том, что определять положение газораспределительного механизма в конкретный момент времени. В свою очередь это необходимо для того, чтобы электронный блок управления двигателем (ЭБУ) давал команду на впрыск топлива в определенный момент времени. В частности, датчик фаз определяет положение первого цилиндра. Также синхронизируется зажигание. Датчик фаз работает в паре с датчиком положения коленчатого вала.

Датчики фаз используются на двигателях с распределенным фазированным впрыском. Также их используют на двигателях, где применяется система изменения фаз газораспределения. В этом случае зачастую используют отдельные датчики для распределительных валов, управляющих впускными и выпускными клапанами.

Работа современных датчиков фаз основывается на применении физического явления, известного под названием эффект Холла. Он заключается в том, что в полупроводниковой пластине, по которой протекает электрический ток, при ее перемещении в магнитном поле возникает разность потенциалов (напряжение). В корпус датчика помещают постоянный магнит.

На практике это реализуется в виде прямоугольной пластины из полупроводникового материала, к четырем сторонам которой подключаются контакты — два входных и два выходных. По первым подается напряжение, а со вторых снимается сигнал.

Все это происходит на основе команд, поступающих от электронного блока управления в конкретный момент времени

Существует два типа разновидностей датчиков фаз — щелевые и торцевые. Они имеют разную форму, однако работают по одному и тому же принципу. Так, на поверхности распределительного вала имеется отметчик (другое название — репер), и в процессе его вращения магнит, входящий в конструкцию датчика, фиксирует его прохождение.

В корпус датчика встроена система (вторичный преобразователь), преобразующая полученный сигнал в информацию, «понятную» для электронного блока управления. Торцевые датчики имеют такую конструкцию, когда на их торце имеется постоянный магнит, который и “видит” прохождение репера возле датчика. В щелевых же датчиках подразумевается использование формы буквы “П”.

И соответствующий репер на диске распределительного проходит между двумя плоскостями корпуса щелевого датчика положения фаз.

В инжекторных бензиновых двигателях задающий диск и датчик фазы настраиваются таким образом, что импульс от датчика формируется и передается на ЭБУ в момент прохождения первым цилиндром его верхней мертвой точки. Таким образом обеспечивается синхронизация подачи топлива и момент подачи искры для воспламенения топливовоздушной смеси. Очевидно, что датчик фаз оказывает непосредственное влияние на работу двигателя в целом.

Признаки неисправности датчика фаз

При полном или частичном выходе датчика фаз из строя электронный блок управления в принудительном порядке переводит двигатель в режим парафазного впрыска топлива. Это означает, что момент впрыска топлива выполняется по показаниям датчика коленчатого вала.

В результате этого каждая топливная форсунка выполняет впрыск топлива в два раза чаще. Таким образом обеспечивается гарантия того, что в каждом цилиндре будет образовываться топливовоздушная смесь.

Однако она образовывается не в самый оптимальный момент, что приводит к падению мощности двигателя, а также перерасходу топлива (пускай и небольшому, хотя это зависит от конкретной модели двигателя).

Симптомами неисправности датчика фаз является:

  • увеличивается расход топлива;
  • повышается токсичность выхлопных газов, будет ощущаться в запахе выхлопных газов, особенно если выбит катализатор;
  • двигатель начинает работать неустойчиво, заметнее всего на малых (холостых) оборотах;
  • снижается динамика разгона автомобиля, а также мощность его двигателя;
  • на приборной панели активируется сигнальная лампа Check Engine, а при сканировании ошибок их номера будут связаны с датчиком фаз, например, ошибка p0340;
  • в момент запуска двигателя в 34 секунд стартер крутит двигатель «в холостую», после чего мотор запускается (обусловлено это тем, что на первых секундах электронный блок управления не получает никакой информации от датчика, после чего автоматически переходит в аварийный режим, основываясь на данных, поступающих от датчика положения коленчатого вала).

Кроме вышеперечисленных признаков, часто при выходе датчика фаз из строя возникают проблемы с системой самодиагностики автомобиля.

В частности, в момент запуска водитель вынужден крутить стартером несколько больше времени, нежели обычно (как правило, 610 секунд, в зависимости от модели машины и установленного на ней двигателя).

А в это время происходит самодиагностика электронного блока управления, что приводит к формированию соответствующих ошибок и переводу двигателя в аварийный режим работы.

Неисправности датчика фаз на авто с ГБО

Отмечается, что при работе двигателя на бензине или дизельном топливе описанные выше неприятные симптомы проявляются не так остро, поэтому зачастую многие автолюбители длительное время используют автомобили с неисправным датчиком фаз. Однако, если ваш автомобиль оборудован газобаллонным оборудованием от четвертого поколения и выше (где используется собственная «умная» электроника), то двигатель будет работать с перебоями, и комфорт от вождения машины резко снизится.

В частности, значительно возрастет расход топлива, топливовоздушная смесь может быть обедненной или, наоборот, обогащенной, значительно снизится мощность и динамика двигателя. Все это происходит из-за рассогласованности работы программного обеспечения электронного блока управления двигателем и блоком управления ГБО.

Соответственно, при использовании газобаллонного оборудования датчик фаз нужно менять сразу же после выявления его поломки.

Использование машины с выведенным из строя датчиком положения распределительного вала вредно в данном случае не только для двигателя, но и непосредственно для газобаллонного оборудования и его управляющей системы.

Причины неисправности

Основной причиной неисправности датчика фаз является его естественный износ, который происходит со временем для любой детали. В частности, из-за воздействия высокой температуры от двигателя и постоянной вибрации в корпусе датчика повреждаются его контакты, может размагнититься постоянный магнит, повредиться сам корпус.

Другой главной причиной — проблемы с проводкой датчика. В частности, питающие/сигнальные провода могут быть оборванными, из-за чего на датчик фаз не подается напряжение питания, либо с него не приходит сигнал по сигнальному проводу.

Также возможен вариант поломки механического крепления на «фишке» (так называемое «ухо»).

Реже возможен выход из строя предохранителя, отвечающего, в том числе за питание датчика фаз (у каждой конкретной машины он будет зависеть от полной электросхемы автомобиля).

Как проверить датчик фаз

Проверка работоспособности датчика фаз двигателя внутреннего сгорания выполняется при помощи диагностического прибора, а также при помощи электронного мультиметра, способного работать в режиме измерения постоянного напряжения. Пример проверки обсудим для датчиков фаз автомобиля ВАЗ-2114. На моделях с 16-ти клапанным двигателем устанавливается датчик модели 21120-3706040, а на 8-ми клапанные — 21110-3706040.

В первую очередь перед диагностикой датчики необходимо демонтировать с их посадочного места. После этого нужно произвести визуальный осмотр корпуса ДФ, а также его контактов и контактной колодки. В случае, если на контактах присутствует грязь и/или мусор — от него необходимо избавиться при помощи спирта либо бензина.

ЭТО ИНТЕРЕСНО:  Ямаха тдм 850 технические характеристики

Для проверки датчика 8-ми клапанного мотора 21110-3706040 его необходимо подключить к аккумуляторной батарее и электронному мультиметру по приведенной на рисунке схеме.

Далее алгоритм проверки будет следующим:

  • Выставить питающее напряжение на уровне +13,5±0,5 Вольт (для питания можно воспользоваться обычным автомобильным аккумулятором).
  • При этом напряжение между сигнальным проводом и «массой» должно составлять не менее 90% от питающего (то есть, 0,9V). Если оно ниже, а тем более равно или близко к нулю, значит, датчик неисправен.
  • Поднести к торцу датчика (которым он направлен к реперу распредвала) стальную пластину.
  • Если датчик исправен, то напряжение между сигнальным проводом и «массой» должно быть не более 0,4 Вольт. Если больше — значит, датчик неисправен.
  • Убрать стальную пластину от торца датчика, напряжение на сигнальном проводе опять должно вернуться к исходным 90% от питающего напряжения.

Для проверки датчика фаз 16-ти клапанного двигателя 21120-3706040 его необходимо подключить к блоку питания и мультиметру по приведенной на втором рисунке схеме.

Для проверки соответствующего датчика фаз вам понадобится металлическая деталь размером шириной не менее 20 мм, длиной не менее 80 мм и толщиной 0,5 мм. Алгоритм проверки будет похожим, однако, с другими значениями напряжений:

  • Установить питающее напряжение на датчике, равное +13,5±0,5 Вольт.
  • При этом, если датчик исправен, то напряжение между сигнальным проводом и «массой» не должно превышать 0,4 Вольта.
  • Поместить заранее подготовленную стальную деталь в щель датчика, куда помещается репер распределительного вала.
  • Если датчик исправен, то напряжение на сигнальном проводе должно быть не менее 90% от значения питающего напряжения.
  • Убрать пластину от датчика, при этом напряжение опять должно упасть до значения не более 0,4 Вольт.

В принципе, подобные проверки можно выполнять, и не демонтируя датчик с его посадочного места. Однако, чтобы осмотреть его лучше снять. Зачастую при проверке датчика имеет смысл проверить и целостность проводов, а также качество контактов. Например, бывают случаи, когда фишка неплотно держит контакт, из-за чего с датчика не поступает сигнал на электронный блок управления. Также, при возможности, желательно «прозвонить» провода, идущие от датчика к ЭБУ и к реле (питающий провод).

Кроме проверки мультиметром, нужно проверить наличие соответствующих ошибок датчика при помощи диагностического прибора. Если подобные ошибки выявлены первый раз, то можно попытаться их сбросить при помощи программных средств, либо просто отсоединив на несколько секунд минусовую клемму аккумуляторной батареи. Если же ошибка появилась вновь — нужна дополнительная диагностика по приведенным выше алгоритмам.

Типовые ошибки датчика фаз:

  • P0340 — отсутствует сигнал определителя положения распредвала;
  • P0341 — фазы газораспределения не совпадают с тактами сжатия/впуска цилиндропоршневой группы;
  • P0342 — в электрической цепи ДПРВ слишком низкий уровень сигнала (фиксируется при замыкании на массу);
  • P0343 — уровень сигнала от измерителя превышает норму (обычно возникает при обрыве проводки);
  • P0339 — от датчика поступает прерывистый сигнал.

Таким образом, при выявлении указанных ошибок желательно выполнить дополнительную диагностику как можно быстрее с тем, чтобы двигатель работал в оптимальном рабочем режиме.

Не нашли ответ на свой вопрос?

Спрашивайте в комментариях. Ответим обязательно!

Источник: https://etlib.ru/blog/1182-neispravnosti-datchika-faz

Проверка фаз газораспределения на двигателе ЗМЗ-40906, комплект оснастки, нормальные углы положения первых кулачков распределительных валов

В процессе эксплуатации в результате удлинения цепей и износа звездочек на двигателе ЗМЗ-40906 возможно значительное отклонение фаз газораспределения от номинальных значений.

Правильность фаз газораспределения является одним из важнейших факторов, влияющих на мощность, крутящий момент и экономические показатели двигателя ЗМЗ-40906.

Поэтому, при снижении мощности двигателя, повышении эксплуатационного расхода топлива и неустойчивой работе двигателя необходимо проверить и при необходимости откорректировать установку фаз газораспределения. 

Проверка фаз газораспределения на двигателе ЗМЗ-40906 осуществляется с использованием комплекта оснастки разработанный на ПАО ЗМЗ. В комплект оснастки для проверки фаз газораспределения входят :

– Кондукторы для сверления дополнительных отверстий под штифт в звездочках распределительных валов двигателя ЗМЗ-40906

Для видов привода распределительных валов с зубчатыми и втулочными цепями предназначены разные кондукторы.

Проверку и корректировку фаз газораспределения можно провести на двигателе ЗМЗ-40906 установленном на автомобиле. Для контроля фаз газораспределения необходимо снять крышку клапанов, отсоединив все провода и шланги. Дальнейшая последовательность действий :

1. Установить поршень 1-го цилиндра в ВМТ такта сжатия, повернув коленчатый вал по ходу вращения (по часовой стрелке) до совпадения риски на шкиве-демпфере коленчатого вала с ребром-указателем (в виде прилива) на крышке цепи. Вращение коленчатого вала против часовой стрелки недопустимо. При этом кулачки распределительных валов 1-го цилиндра и метки на звездочках распределительных валов должны располагаться согласно схемы ниже.

Схема положения распределительных валов при положении поршня первого цилиндра в ВМТ такта сжатия для привод распределительных валов с втулочными и зубчатыми цепями

В случае если вершины кулачков и метки расположены внутрь, то необходимо повернуть коленчатый вал еще на один оборот. Точную установку поршня 1-го цилиндра в ВМТ можно провести с помощью индикатора часового типа, который устанавливается и закрепляется в свечном отверстии 1-го цилиндра.

2. Установить транспортир за первым кулачком распределительного вала впускных клапанов — вид «А». Прижимая транспортир к верхней плоскости головки блока цилиндров, приложить и плотно прижать шаблон к поверхности первого кулачка. При этом стрелка шаблона должна показывать на транспортире угол :

— 20°30+-2°40 для привода распределительных валов с втулочными цепями.
— 20°+-2°40 для привода распределительных валов с зубчатыми цепями.

Проверка углового положения распределительных валов на двигателе ЗМЗ-40906

При измерении ведущая ветвь цепи (в районе верхнего и среднего успокоителей) должна быть натянута. Для этого ключом повернуть впускной распределительный вал за четырехгранник на его теле против часовой стрелки и удерживать в этом состоянии, не допуская поворота коленчатого вала.

Аналогично провести проверку углового положения первого кулачка распределительного вала выпускных клапанов — вид «Б». Стрелка шаблона должна показывать на транспортире угол :

— 19°30+-2°40 для привода распределительных валов с втулочными цепями.
— 19°+-2°40 для привода распределительных валов с зубчатыми цепями.

При измерении ведущая ветвь цепи (в районе среднего успокоителя) должна быть натянута. Для этого ключом повернуть выпускной распределительный вал за четырехгранник на его теле против часовой стрелки и удерживать в этом состоянии, не допуская поворота коленчатого вала.

При этих значениях углового положения первых кулачков распределительных валов достигаются наилучшие технико-экономические показатели двигателя ЗМЗ-40906. В случае, если отклонения углового положения кулачков распределительных валов превышают допустимые +-2°40, требуется корректировка фаз газораспределения. Подробнее о корректировке фаз газораспределения в отдельном материале.

Источник: https://auto.kombat.com.ua/proverka-faz-gazoraspredeleniya-dvigatele-zmz-40906-komplekt-osnastki-normalnyie-uglyi/

Фазы и механизм газораспределения — как это работает и на что влияет

Термин «фаза» означает часть, этап или ступень какого-то процесса. Поэтому впускная и выпускная фазы газораспределения – часть полного цикла работы двигателя внутреннего сгорания. Прочитав статью, вы узнаете, что происходит во время фаз, каким образом двигатель регулирует их и на что влияют фазы газораспределения.

Как работает двигатель внутреннего сгорания

Воспламенение топливовоздушной смеси в цилиндре двигателя приводит к выделению выхлопных газов и увеличению температуры. Во время такта сжатия поршень движется к верхней мертвой точке (ВМТ) сжимая топливовоздушную смесь или воздух (дизельный двигатель).

Воспламенение происходит незадолго до ВМТ. В бензиновом двигателе топливовоздушную смесь воспламеняет искра свечи зажигания. В дизельном моторе в раскаленный от сжатия воздух впрыскивают распыленное топливо. Когда поршень приближается к нижней мертвой точке (НМТ), наступает выпускная фаза газораспределения.

Выпускной клапан открывается и поднимающийся к ВМТ поршень выдавливает из цилиндра продукты горения топливовоздушной смеси. Когда поршень подходит к ВМТ заканчивается фаза выпуска и начинается фаза впуска. Поршень движется в ВМТ, в цилиндре возникает разряжение, благодаря которому воздух засасывает внутрь камеры сгорания.

После достижения ВМТ фаза впуска завершается и начинается такт сжатия.

Устройство механизма газораспределения

Газораспределительный механизм (ГРМ) состоит из:

  • одного или двух кулачковых распределительных валов, на каждый из которых установлена своя шестерня;
  • шестерни коленчатого вала;
  • цепного или ременного привода.

Число зубьев шестерни распределительного вала всегда в 2 раза больше, чем у шестерни коленчатого вала.

Благодаря этому за два оборота коленчатого вала происходит лишь один оборот распределительного вала. Это позволяет открывать и закрывать клапаны головки блока цилиндров (ГБЦ) в зависимости от такта двигателя.

Фазы газораспределения зависят от расположения кулачков распределительного вала. Поэтому на одновальных двигателях возможна только одновременная регулировка фаз впуска и выпуска. На двухвальных двигателях возможна раздельная регулировка фазы впуска и фазы выпуска.

Это позволяет оптимизировать работу двигателя под различные режимы.

Когда кулачок распределительного вала доходит до клапана, то начинает давить на него до тех пор, пока клапан полностью не откроется. Затем кулачок проходит дальше и пружина начинает выдавливать клапан, стремясь закрыть его. Как только давление со стороны распределительного вала исчезает, пружина полностью закрывает клапан. Угол поворота распределительного вала, в течение которого впускные или выпускные клапаны одного цилиндра открыты и называется фазой газораспределения.

На что влияют фазы ГРМ

В двигателях современных бюджетных автомобилей не предусмотрена автоматическая регулировка фаз газораспределения, поэтому они настроены на средний режим работы.

Форма кулачков распределительных валов таких двигателей рассчитана на максимальное наполнение и освобождение цилиндров при скорости вращения, близкой к максимальному крутящему моменту. Обычно он расположен между 2/3 и 3/4 от максимальных оборотов.

Поэтому такой двигатель «плохо тянет» на оборотах ниже половины от максимальных.

Почему так происходит? Чем выше обороты двигателя, тем быстрей движутся поршни. В результате давление внутри цилиндра во время фазы выпуска возрастает, но пропускная способность выпускного клапана не меняется.

Во время фазы впуска поршень движется быстрей, чем на холостых оборотах, но пропускная способность клапана не меняется. Поэтому чем выше обороты двигателя, тем хуже наполнение цилиндров. Поэтому нередко фазы выпуска и выпуска пересекаются.

В то время когда выпускной клапан закрывается, но еще открыт, начинает открываться впускной клапан.

На холостых и низких оборотах часть топлива, которая поступает в двигатель, уходит в выхлопную трубу. Это снижает мощность и экономичность двигателя. По мере роста оборотов влияние этого эффекта слабеет. Поэтому чем выше обороты двигателя, тем длинней должны быть фазы газораспределения. Это позволит избежать снижения мощности мотора.

Если сдвинуть фазы газораспределения от оптимальной точки, то произойдет резкое падение мощности мотора. Ведь цилиндры будут или не до конца освобождаться от выхлопных газов или не до конца наполняться топливовоздушной смесью. Однако оптимальная точка начала фазы и ее продолжительность зависят от нагрузки на мотор и оборотов двигателя.

Поэтому тюнинговые мастерские и умелые автомобилисты устанавливают вместо штатной шестерни распределительного вала разрезную шестерню, с помощью которой можно сдвигать фазу на угол до 10 градусов. Также используют тюнинговые распределительные валы, рассчитанные на различные режимы и нагрузки. Те, кто предпочитает ездить на максимальной скорости, устанавливают валы с максимальными фазами впуска и выпуска.

Те же, кто ездит на средних оборотах двигателя, избегая резких стартов и больших скоростей, ставят валы с чуть уменьшенными фазами.

Регулятор фаз газораспределения

Существует большое количество моделей фазорегуляторов, которые работают по различным алгоритмам. Однако, общий принцип неизменен. Когда двигатель работает на низких оборотах, фазорегулятор сокращает впускную и выпускную фазы. Это позволяет сократить расход топлива.

Когда двигатель начинает работать на высоких оборотах или под нагрузкой, регулятор увеличивает продолжительность фаз, а нередко и точку их начала. Это позволяет не только увеличить мощность и крутящий момент, но и снижает расход топлива. Наиболее популярны модели фазорегуляторов, которые работают на основе центробежного принципа.

Чем выше обороты двигателя, тем сильней они натягивают цепь или ремень привода ГРМ, тем самым сдвигая и фазы газораспределения. Благодаря тому, что эти устройства регулируют натяжение ремня или цепи со стороны обоих распределительных валов, они эффективно сдвигают обе фазы.

Такие фазорегуляторы не требуют настройки, однако после пробега в 40-70 тысяч километров необходимо менять уплотнительные кольца гидроцилиндров.

Более сложные регуляторы представляют собой систему из датчиков, контроллера двигателя и исполнительных устройств. Однако, принцип их работы точно такой же, как у центробежных. Исполнительное устройство увеличивает или ослабляет натяжение цепи со стороны впускного и выпускного валов. Благодаря этому каждая фаза регулируется отдельно.

Такие системы требуют настройки и регулярной проверки. Благодаря тому, что исполнительные механизмы работают от электричества, нет необходимости в регулярной замене уплотнительных колец. Существуют также системы, в которых электронное управление совмещено с гидравлическим приводом.

В таких системах регулировка происходит не за счет натяжения цепи, а с помощью увеличения давления внутри шестерни распределительного вала.

Чем выше давление, тем дальше гидропривод проворачивает распределительный вал относительно положения шестеренки.

Как установить фазы газораспределения

На большинстве современных автомобилей, оснащенных механическим ГРМ, фазы газораспределения выставляют одинаково. По ВМТ первого цилиндра. Для этого на корпусе блока цилиндров и ГБЦ, а также на шестернях распределительного и коленчатого валов нанесены специальные метки. В первую очередь совмещают метки коленчатого вала.

Затем совмещают метки распределительного (распределительных) валов. После этого надевают и натягивают цепь или ремень, затем проверяют метки. Если метки на месте, коленчатый вал прокручивают 2 или 4 раза и снова проверяют метки. Если метки шестерней распределительного и коленчатого валов совпадают с метками на блоке цилиндров и ГБЦ, то фазы выставлены правильно.

Если отличаются, необходимо снять цепь или ремень и повторить все операции. 

Источник: https://VipWash.ru/vyhlopnaya-sistema/fazy-i-mehanizm-gazoraspredeleniya

Изменение фаз газораспределения в двигателе

Качество работы двигателя внутреннего сгорания автомобиля зависит от многих факторов, таких как мощность, коэффициент полезного действия, объем цилиндров.

Большое значение в моторе имеют фазы газораспределения, и от того, как происходит перекрытие клапанов, зависит экономичность ДВС, его приемистость, стабильность работы на холостых оборотах.

В стандартных простых двигателях изменение фаз ГРМ не предусматривается, и такие моторы не отличаются высокой эффективностью.

Но в последнее время все чаще на автомашинах передовых компаний, таких как Хонда, Мерседес, Тойота, Ауди все чаще стали применяться силовые агрегаты с возможностью изменения смещения распределительных валов по мере изменения количества оборотов в ДВС.

Диаграмма фаз газораспределения двухтактного двигателя

Двухтактный двигатель отличается от четырехтактного тем, что рабочий цикл у него проходит за один оборот коленвала, в то же время на 4-тактных ДВС он происходит за два оборота. Фазы газораспределения в ДВС определяются продолжительностью открытия клапанов – выпускных и впускных, угол перекрытия клапанов обозначается в градусах положения к/в.

В 4-тактных моторах цикл наполнения рабочей смеси происходит за 10-20 градусов до того, как поршень придет в верхнюю мертвую точку, и заканчивается через 45-65º, а в некоторых ДВС и позднее (до ста градусов), после того как поршень пройдет нижнюю точку. Общая продолжительность впуска в 4-тактных моторах может длиться 240-300 градусов, что обеспечивает хорошую наполняемость цилиндров рабочей смесью.

В 2-тактных движках продолжительность впуска топливовоздушной смеси длится на повороте коленвала приблизительно 120-150º, также меньше длится и продувка, поэтому наполнение рабочей смесью и очистка выхлопных газов у двухтактных ДВС всегда хуже, чем у 4-тактных силовых агрегатов. На рисунке ниже показана диаграмма фаз газораспределения двухтактного мотоциклетного двигателя движка К-175.

Двухтактные движки применяются на автомобилях нечасто, так как они обладают более низким КПД, худшей экономичностью и плохой очисткой выхлопных газов от вредных примесей. Особенно актуален последний фактор – в связи с ужесточением норм экологии важно, чтобы в выхлопе двигателя содержалось минимальное количество CO.

Но все же у 2-хтактных ДВС есть и свои преимущества, особенно у дизельных моделей:

  • силовые агрегаты компактнее и легче;
  • они дешевле стоят;
  • двухтактный мотор быстрее разгоняется.

Датчик фаз газораспределения

На многих автомобилях в 70-х и 80-х годах прошлого столетия в основном устанавливались карбюраторные двигатели с «траблерной» системой зажигания, но многие передовые компании по производству автомашин уже тогда начали оснащать моторы электронной системой управления двигателем, в которой всеми основными процессами управлял единый блок (ЭБУ). Сейчас практически все современные авто имеют ЭСУД – электронная система применяется не только в бензиновых, но и в дизельных ДВС.

В современной электронике присутствуют различные датчики, контролирующие работу двигателя, посылающие сигналы блоку о состоянии силового агрегата. На основании всех данных от датчиков ЭБУ принимает решение – сколько необходимо подавать топлива в цилиндры на тех или иных нагрузках (оборотах), какой установить угол опережения зажигания.

Датчик фаз газораспределения имеет еще одно название – датчик положения распредвала (ДПРВ), он определяет положение ГРМ относительно коленвала. От его показаний зависит, в какой пропорции будет подаваться топливо в цилиндры в зависимости от количества оборотов и угла опережения зажигания.

Если ДПРВ не работает, значит, фазами ГРМ не контролируются, и ЭБУ не «знает», в какой последовательности необходимо подавать топливо в цилиндры.

В результате возрастает расход топлива, так как бензин (солярка) одновременно подается во все цилиндры, двигатель работает вразнобой, на некоторых моделях авто ДВС вовсе не запускается.

ЭТО ИНТЕРЕСНО:  Что легче вода или бензин

Клапан системы изменения фаз газораспределения

Система изменения фаз газораспределения (СИФГ) обеспечивает более низкий расход топлива, снижает уровень CO в выхлопных газах, позволяет более эффективно использовать мощность ДВС. У разных мировых автопроизводителей разработана своя СИФГ, применяется не только изменение положения распредвалов, но и уровень поднятия клапанов в ГБЦ.

Например, компания Nissan применяет систему CVTCS, которой управляет клапан регулировки фаз газораспределения (электромагнитный клапан). На холостых оборотах этот клапан открыт, и не создает давление, поэтому распредвалы находятся в исходном состоянии.

Открывающийся клапан увеличивает давление в системе, и чем оно выше, тем на больший угол сдвигаются распредвалы.

Следует отметить, что СИФГ в основном используются на двигателях с двумя распределительными валами, где в цилиндрах устанавливается по 4 клапана – по 2 впускных и 2 выпускных.

Приспособления для установки фаз газораспределения

Чтобы двигатель работал без перебоев, важно правильно выставить фазы ГРМ, установить в нужном положении распределительные валы относительно коленвала. На всех движках валы выставляются по меткам, и от точности установки зависит очень многое. Если валы выставляются неправильно, возникают различные проблемы:

  • мотор неустойчиво работает на холостых оборотах;
  • ДВС не развивает мощности;
  • происходят выстрелы в глушитель и хлопки во впускном коллекторе.

Если в метках ошибиться на несколько зубьев, не исключено, что могут согнуться клапана, и движок при этом не запустится.

На некоторых моделях силовых агрегатов разработаны специальные приспособления для установки фаз газораспределения. В частности, для двигателей семейства ЗМЗ-406/ 406/ 409 есть специальный шаблон, с помощью которого измеряются углы положения распредвалов. Шаблоном можно проверить существующие углы, и если они выставлены неправильно, валы следует переустановить. Приспособление для 406-х моторов представляет собой набор, состоящий из трех элементов:

  • двух угломеров (для правого и левого вала, они разные);
  • транспортира.

Когда коленчатый вал выставлен в ВМТ 1-го цилиндра, кулачки распредвалов должны выступать над верхней плоскостью ГБЦ под углом 19-20º с погрешностью ± 2,4°, причем, кулачок впускного валика должен быть чуть выше кулачка выпускного распредвала.

Также есть специальные приспособления для установления распредвалов на моторах BMW моделей M56/ M54/ M52. В комплект установки фаз газораспределения ДВС БВМ входит:

  • ключ динамометрический с удлинителем;
  • регулировочная пластина для двойной системы VANOS;
  • штифты для фиксации маховика;
  • гильза со шпинделем для натяжки первичной цепи;
  • приспособление для натяжки вторичной цепи, а также для блокировки плунжера натяжителя;
  • фиксатор распредвалов.

Неисправности системы изменения фаз газораспределения

Изменять фазы газораспределения можно различными способами, и последнее время наиболее распространен поворот р/валов, хотя нередко применяется метод изменения величины подъема клапанов, использование распределительных валов с кулачками измененного профиля. Периодически в газораспределительном механизме возникают различные неисправности, из-за которых мотор начинает работать с перебоями, «тупит», в некоторых случаях и вовсе не запускается. Причины возникновения неполадок могут быть разными:

  • неисправен электромагнитный клапан;
  • засорилась грязью муфта изменения фаз;
  • вытянулась цепь газораспределительного механизма;
  • неисправен натяжитель цепи.

Часто при возникающих неисправностях в этой системе:

  • снижаются холостые обороты, в некоторых случаях ДВС глохнет;
  • значительно увеличивается расход топлива;
  • двигатель не развивает обороты, машина порой не разгоняется даже до 100 км/ч;
  • мотор плохо запускается, его приходится гонять стартером несколько раз;
  • слышен стрекот, идущий из муфты СИФГ.

По всем признакам основная причина проблем с двигателем – выход из строя клапана СИФГ, обычно при этом компьютерная диагностика выявляет ошибку этого устройства. Следует отметить, что лампа диагностики Check Engine загорается при этом не всегда, поэтому трудно понять, что сбои происходят именно в электронике.

Часто проблемы ГРМ возникают из-за засорения гидравлики – плохое масло с частицами абразива забивает каналы в муфте, и механизм заклинивает в одном из положений. Если муфту «клинит» в исходном положении, ДВС спокойно работает на ХХ, но совсем не развивает оборотов. В случае, когда механизм остается в положении максимального перекрытия клапанов, движок может плохо запускаться.

Тюнинг фаз газораспределения

К сожалению, на двигатели российского производства СИФГ не устанавливается, но многие автомобилисты занимаются тюнингом ДВС, стараясь улучшить характеристики силового агрегата. Классический вариант модернизации мотора – это установка «спортивного» распредвала, у которого смещены кулачки, изменен их профиль.

У такого р/вала есть свои преимущества:

  • мотор становится приемистым, четко реагирует на нажатие педали газа;
  • улучшаются динамические характеристики автомобиля, машина буквально рвет из-под себя.

Но в таком тюнинге есть и свои минусы:

  • холостые обороты становится неустойчивыми, приходится их выставлять в пределах 1100-1200 об/мин;
  • увеличивается расход топлива;
  • достаточно сложно отрегулировать клапана, ДВС требует тщательной настройки.

Достаточно часто тюнингу подвергаются вазовские двигатели моделей 21213, 21214, 2106. Проблема движков ВАЗ с цепным приводом – появление «дизельного» шума, и часто он возникает из-за вышедшего из строя натяжителя. Модернизация ДВС ВАЗ заключается в установке автоматического натяжителя вместо штатного заводского.

Нередко на модели двигателей ВАЗ-2101-07 и 21213-21214 устанавливают однорядную цепь: мотор с ней работает тише, к тому же цепочка меньше изнашивается – ее ресурс составляет в среднем 150 тыс. км.

Источник: https://avtobrands.ru/izmenenie-faz-gazoraspredeleniya-v-dvigatele/

Устройство автомобилей



При рассмотрении рабочих циклов поршневых двигателей условно принималось, что открытие и закрытие клапанов происходит в момент нахождения поршня в верхней или нижней мертвой точке (ВМТ или НМТ).
В действительности, при работе реальных двигателей, клапаны открываются с опережением и закрываются с запаздыванием относительно мертвых точек, за счет чего достигается значительное улучшение наполнения цилиндров свежим зарядом и эффективное удаление из них отработавших газов.

Моменты открытия и закрытия клапанов, выраженные в углах поворота коленчатого вала по отношению к начальным или конечным моментам соответствующих тактов, называются фазами газораспределения.

Как известно, основная функция механизма газораспределения — обеспечить максимальную эффективность наполнения и очистки цилиндра во время работы двигателя. От того, насколько грамотно подобраны фазы газораспределения, зависит экономичность и мощность двигателя, а также его тяговые и динамические характеристики.

В двигателях без наддува впускной клапан открывается за 1030˚ поворота коленчатого вала до прихода поршня в ВМТ и закрывается через 5080˚ после прохождения поршнем НМТ. Выпускной клапан открывается за 4070˚ до НМТ и закрывается после прохождения поршнем ВМТ через 1050˚ поворота коленчатого вала. Чем быстроходнее двигатель, тем больше значение этих углов (шире фазы газораспределения).

Открытое состояние впускного клапана в начале такта сжатия обеспечивает продолжение наполнения цилиндра из-за инерции свежего заряда и разности давления окружающей среды и давления в цилиндре в начале сжатия. Опережение открытия впускного клапана рассчитывают так, чтобы к моменту прихода поршня в ВМТ клапан был уже открыт.

Предварение открытия выпускного клапана до прихода поршня в нижнюю мертвую точку (НМТ) обеспечивает очистку цилиндра на начальном этапе вследствие избыточного давления в цилиндре, поэтому работа поршня по выталкиванию газов при такте выпуска значительно уменьшается, что способствует повышению мощности двигателя.

Так как впускной клапан открывается в конце выпуска, а выпускной закрывается в начале впуска, то возникает период времени, когда оба клапана одновременно открыты. Этот период называется перекрытием клапанов. В двигателях с наддувом эти углы увеличивают.

Во время перекрытия клапанов, когда одновременно в цилиндр поступает свежий заряд, а через выпускной клапан удаляются отработавшие газы, происходит продувка цилиндров, которая улучшает газообмен.

Очевидно, что наддув эффективен для дизельных двигателей, поскольку продувка цилиндров в них осуществляется чистым воздухом, а не рабочей смесью, как в карбюраторных двигателях.

Диаграмма фаз газораспределения показана на рис. 1.

Фазы газораспределения зависят от профиля кулачка распределительного вала и взаимного расположения кулачков. Если профили впускных и впускных кулачков одинаковы, то продолжительность открытого состояния клапанов тоже будет одинакова.

***

Изменяемые фазы газораспределения

В обычном двигателе фазы газораспределения определяются формой кулачка распределительного вала и остаются неизменными во всех диапазонах и при любых режимах работы двигателя. Однако постоянные фазы газораспределения не позволяют создавать оптимальные процессы смесеобразования для каждого конкретного режима.

Для примера рассмотрим, какие требования к газораспределению предъявляет двигатель при различных условиях нагрузки и работы.

Режим холостого хода

На этом режиме работы следует устанавливать такой угол поворота распределительного вала, который соответствует самому позднему началу открытия впускных клапанов (максимальный угол задержки, при минимальном перекрытии клапанов). Этим обеспечивается минимальное поступление отработавших газов во впускной трубопровод, что улучшает стабильность работы двигателя и снижение расхода топлива.

Режим низких нагрузок

При работе в режиме низких нагрузок перекрытие клапанов необходимо уменьшить для минимизации поступления отработавших газов во впускной трубопровод, что улучшает стабильность работы двигателя.

Режим средних нагрузок

В этом режиме необходимо увеличить перекрытие клапанов, что позволит снизить «насосные» потери. При этом часть отработавших газов поступает во впускной трубопровод, что позволяет повысить температуру рабочего цикла сжатия и уменьшить ее в процессе такта сгорания (рабочего хода), что, в свою очередь, приводит к снижению содержания оксидов азота в отработавших газах и повышению температурного КПД двигателя.

Режим высоких нагрузок при низкой частоте вращения коленчатого вала

На этом режиме должно обеспечиваться раннее закрытие впускных клапанов, чтобы обеспечить увеличение крутящего момента. Небольшое или нулевое перекрытие клапанов заставляет двигатель более четко реагировать на изменение положения дроссельной заслонки, что, например, очень важно при движении в городском транспортном потоке.

Режим высоких нагрузок при высокой частоте вращения коленчатого вала

Для того чтобы получить максимальную мощность при высокой частоте вращения коленчатого вала, необходимо обеспечить перекрытие клапанов около ВМТ с большим углом поворота коленчатого вала. Это связано с тем, что мощность в наибольшей степени зависит от максимально возможного количества топливно-воздушной смеси, попадающей в цилиндр за короткое время, но, чем выше частота вращения, тем меньше время, отводимое на заполнение цилиндра.



Приведенный выше анализ показывает, что механизм газораспределения должен чутко подстраиваться под конкретные условия работы двигателя, чтобы обеспечить наиболее эффективное выполнение двигателем своих функций. Очевидно, что газораспределительный механизм должен уметь изменять фазы газораспределения в зависимости от режима работы двигателя.

Осознание конструкторами необходимости применения «гибких» ГРМ, способных изменять фазы газораспределения в следящем режиме в зависимости от условий работы двигателя привело к созданию различных систем и технических решений, позволивших воплотить эту идею в жизнь.

Основными задачами системы изменения фаз газораспределения являются:

  • улучшение качества работы двигателя на холостом ходу;
  • повышение топливной экономичности двигателя;
  • оптимизация крутящего момента в области средних и высоких частот вращения коленчатого вала;
  • увеличение внутренней рециркуляции отработавших газов с сопутствующим ей снижением температуры газов при сгорании и уменьшением выброса оксидов азота;
  • увеличение мощности в области высоких частот вращения коленчатого вала.

Чтобы варьировать фазами газораспределения во время работы двигателя необходимо каким-либо образом изменять положение распределительного вала относительно коленчатого вала. При этом принцип действия привода поворота распределительного вала, для изменения фаз газораспределения, может быть любым — механическим, гидравлическим, электрическим или пневматическим.

Впервые изменение фаз газораспределения было применено на автомобилях Альфа Ромео в 1983 году. После этого такие системы стали применяться на автомобилях Мерседес, Ниссан, БМВ, Порше и др.

В 90-е годы все больше и больше двигателей стали оборудоваться системами изменения фаз газораспределения таким образом, что угол перекрытия клапанов мог изменяться в соответствии с режимами работы двигателя.

В этих системах, применяемых на двигателях DOHC (с двумя распределительными валами), монтировалось специальное устройство в приводную шестерню распределительного вала впускных клапанов. Такие устройства называют изменяемыми фазами газораспределения VIVT (Variable inlet valve timing).

В связи с все более повышающимися требованиями к уменьшению выбросов токсичных веществ с отработавшими газами в настоящее время разработаны устройства, которые могут изменять фазы газораспределения во всем диапазоне возможной частоты вращения коленчатого вала двигателя, как для впускных, так и для выпускных клапанов, что позволяет регулировать количество остаточных отработавших газов в камере сгорания.
Бесступенчатое изменение фаз газораспределения позволяет, также, улучшить работу двигателя на холостом ходу и полных нагрузках, обеспечивая повышение крутящего момента и мощности.

Альтернативной механическим системам явилась более дешевая конструкция системы изменения фаз газораспределения с использованием гидроуправляемой муфты — фазовозвращателя.

Такая муфта способна под действием управляющей электроники и гидравлики поворачивать распределительный вал на определённый угол относительно его первоначального положения.

С повышением оборотов муфта проворачивает вал по ходу вращения, что ведёт за собой более раннее открытие впускных клапанов и как следствие — лучшее наполнение цилиндров на высоких оборотах.

Инженеры не остановились на этом и разработали ряд систем, способных не только двигать фазы, но и расширять или сужать их. В зависимости от конструкции это может достигаться несколькими способами.

Например, в системе VVTL-i, разработанной специалистами фирмы Тойота, после достижении определённых оборотов (6000 об/мин) вместо обычного кулачка в работу включается дополнительный — с изменённым профилем. Профиль этого кулачка задаёт иную кинематику движения клапана и изменяет фазы газораспределения. При повышении частоты вращения коленчатого вала свыше 65008000 об/мин у двигателя словно открывается второе дыхание, способное придать автомобилю динамический рывок при ускорении.

В настоящее время системы непрерывного изменения фаз газораспределения применяются на двигателях Ауди, Фольксваген, Тойота, Рено, Вольво и др.

Источник: http://k-a-t.ru/PM.01_mdk.01.01/3_dvs_8_7/

«Проверка и регулировка фаз газораспределения четырёхтактного двигателя»

1.1. Цельработы.

Приобретениенавыков по:

-определению положения поршня в точкахотсчёта – в верхней мёртвой точке (ВМТ)и в нижней мертвой точке (НМТ);

-измерению и регулировке тепловых зазоровв механизме привода клапанов;

-определению моментов начала открытияи конца закрытия клапанов;

-построению круговых диаграммгазораспределения четырёхтактногодизеля.

1.2Обоснованиеработы

Фазыгазораспределения – это процессы, происходящие в цилиндре работающегодвигателя в течение одного цикла (дваоборота у четырёхтактного двигателя иодин – у двухтактного). Там последовательно происходит смена рабочих процессов -фаз газораспределения.

Переход от одногопроцесса к другому происходит в строгойзависимости от положения органовгазораспределения. Открытия или закрытияклапанов (у четырёхтактного двигателя),выраженные в градусах угла поворотаколенчатого вала относительно ВМТ илиНМТ.

Моменты закрытия и открытия органовгазораспределения принято изображатьна круговых диаграммах (рис. 1.1).

Процессыгазораспределения, происходящие вцилиндре у четырёхтактного двигателя,состоят из четырёх фаз:

1)всасывание и заполнение порцией свежегозаряда увеличивающегося объёма цилиндрапри ходе поршня вниз – от ВМТ к НМТ;

2)процесс сжатия свежего заряда при ходепоршня вверх и закрытых клапанах, отНМТ к ВМТ;

3)следующая фаза – рабочий ход (расширение)при ходе поршня вниз и закрытых клапанах,от ВМТ к НМТ;

4)процесс очистки от продуктов сгораниярабочего объёма цилиндров при ходепоршня от НМТ к ВМТ.

Тактомназывается движение поршня от одноймёртвой точки к другой, его величинавсегда составляет 180۫˚угла поворота коленчатого вала.

Фазамигазораспределения называютсяпоследовательно происходящие рабочиепроцессы у работающего двигателя втечение одного цикла. Величина каждойфазы газораспределения совпадает понаправлению движения с тактом, ноотличается от него углом поворотаколенвала в большую или меньшую сторону.

Величина каждой фазы зависит от характераизменения процесса в цилиндре, которыйопределяется конструктивными особенностямидвигателя и законами истечения газов.Так, для лабораторного двигателя 3NVD-24,фаза наполнения равна фазе выпуска исоставляет 240 градусов п.к.в. Фаза сжатияравна по углу поворота фазе рабочегохода и составляет 140º.

Чтобы правильно выставить величиныфаз газораспределения необходимо уметьопределять углы начала открытия и концазакрытия клапанов относительно верхнейи нижней мёртвых точек, предварительноустановив тепловые зазоры клапанов.

Цикломназывается совокупность взаимосвязанныхпериодов (фаз), образующих законченныйкруг развития термодинамическихпроцессов, где начальные и конечныесостояния совпадают.

2. Перечень приборов, инструмента и устройств

Работавыполняется на четырехтактном двигателевнутреннего сгорания 3 NVD-24.

Длявыполнения работы требуется:

-набор инструмента для техническогообслуживания двигателя;

-шток с индикаторной головкой илишток с линейкой;

-рулетка;

-мел;

-набор щупов в диапазоне 0,1-1,5 мм;

-паспортные данные периодов открытия изакрытия клапанов 3NVD-24.

Основнымидокументами, имеющими приоритетноезначение и юридически признанными,являются паспорта, выдаваемые на каждыйдвигатель заводом-строителем.

Паспортныеданные двигателя 3 NVD — 24:.

-диаметр цилиндра – Dцил.= 17,5 см. (175 мм.);

-ход поршня – S = 24 см. (240 мм.);

-мощность эффективная – Nе = 65 э.л.с. (48 кВт);

-мощность одного цил. — Nц= 21, 67 э.л.с. (16 кВт.);

-число оборотов – n = 630 об/мин.;

-степень сжатия — ε = 14,85 (отношение Va/Vс);

-степень повышения давления — λ = 1,67 (отношение Рz/ Рс);

-давление сжатия — Рс= 36 кгс/см.;

-максимальное давление сгорания — Рz= 60 кгс/см2;

-давление впрыска топлива — Рвпр= 280 кгс/см2;

-давление масла — Рм(min) = 1,0 кгс/см2;

-температура выхлопных газов — tвыхл.(max) = 380ºС;

-диаметр маховика — Dм= 830мм.;

-тепловой зазор клапана всасывания – — 0,40 мм.;

-тепловой зазор выпускного клапана- — 0.40 мм.;

-начало открытия клапана всасывания — 20° до ВМТ;

-закрытие клапана всасывания — 40° после НМТ;

-начало открытия выпускного клапана — 40° до НМТ;

-закрытие выпускного клапана — 20° после НМТ.

Источник: https://studfile.net/preview/3599180/

Понравилась статья? Поделиться с друзьями:
Дневники мотоциклиста
Почему идет дым из сапуна

Закрыть